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A. Juste51, D. Käfer21, E. Kajfasz15, A.M. Kalinin36, J.R. Kalk66, J.M. Kalk61, S. Kappler21, D. Karmanov38,
P. Kasper51, I. Katsanos71, D. Kau50, R. Kaur27, V. Kaushik79, R. Kehoe80, S. Kermiche15, N. Khalatyan51,

A. Khanov77, A. Kharchilava70, Y.M. Kharzheev36, D. Khatidze71, H. Kim32, T.J. Kim31, M.H. Kirby54,
M. Kirsch21, B. Klima51, J.M. Kohli27, J.-P. Konrath23, M. Kopal76, V.M. Korablev39, A.V. Kozelov39, D. Krop55,
T. Kuhl24, A. Kumar70, S. Kunori62, A. Kupco11, T. Kurča20, J. Kvita9, F. Lacroix13, D. Lam56, S. Lammers71,
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17LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
18DAPNIA/Service de Physique des Particules, CEA, Saclay, France
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Using 1 fb−1 of data from pp collisions at
√

s = 1.96 GeV at the Fermilab Tevatron collider
collected by the D0 detector, we search for decays of Kaluza-Klein excitations of the graviton in the
Randall-Sundrum model of extra dimensions to e+e− and γγ. We set 95% confidence level upper
limits on the production cross section times branching fraction which translate into lower limits
on the mass of the lightest excitation between 300 and 900 GeV for values of the coupling k/MPl

between 0.01 and 0.1.
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PACS numbers: 13.85.Rm, 04.50.+h, 12.60.-i

The large difference between the Planck scale, MPl ≈
1016 TeV, and the weak scale presents a strong indication
that the standard model is incomplete. In the presence
of this hierarchy of scales it is not possible to stabilize the
Higgs boson mass at the low values required by experi-
mental data without an excessive amount of fine-tuning
unless there is some, as yet unknown, physics at the TeV
scale.

Randall and Sundrum have suggested a model [1] in
which the fundamental scale of gravity is near the weak
scale and gravity appears so feeble because it is expo-
nentially suppressed by the existence of a fifth dimen-
sion and a warped space-time metric. Standard model
fields would be confined to one 3-brane (a 4-dimensional
subspace of this 5-dimensional space) and gravity origi-
nates at another 3-brane. Only gravitons propagate in
the bulk between these two branes. The apparent weak-
ness of gravity originates from the small overlap of the
graviton wave function with the standard model fields in
the fifth dimension.

This model predicts a tower of Kaluza-Klein excita-
tions as the 4-dimensional manifestation of the graviton
propagating in 5-dimensional space. In the following we
refer to these as RS (Randall-Sundrum) gravitons. The
massless zero-mode couples with gravitational strength.
The massive modes couple with similar strength as the
weak interaction. Their properties are quantified by
two parameters, the mass of the first massive excitation
M1 and the dimensionless coupling constant to standard
model fields, k/MPl, where MPl = MPl/

√
8π is the re-

duced Planck scale. To address the hierarchy problem
without the need for fine-tuning M1 should be in the
TeV range and 0.01 < k/MPl < 0.1 [2]. For these values
the first massive RS graviton G is a narrow resonance
with a width much smaller than the resolution of the D0
detector. If kinematically accessible, RS gravitons can
be resonantly produced in high energy particle collisions.
They decay into pairs of fermions or bosons.

In this Letter we consider decays into e+e− and γγ
pairs. We search for these as resonances in the e+e− and
γγ invariant mass spectrum from 1 fb−1 of data collected
using the D0 detector at the Fermilab Tevatron collider
between October 2002 and February 2006. In the Teva-
tron protons and antiprotons collide at

√
s = 1.96 TeV.

D0 has previously published searches for RS gravitons [3]
and excluded M1 < 250 GeV for k/MPl = 0.01 and
M1 < 785 GeV for k/MPl = 0.1 at 95% confidence
level with 260 pb−1 of data. CDF has recently submitted
for publication searches that exclude M1 < 889 GeV for
k/MPl = 0.1 [4] based on 1.3 fb−1 of data.

The D0 detector [5, 6] consists of tracking detectors,
calorimeters, and a muon spectrometer. The tracker em-
ploys silicon microstrips close to the beam and concen-
tric cylinders of scintillating fibers in a 2 T axial mag-
netic field. The liquid-argon/uranium sampling calorime-

ter has an electromagnetic section that is 20 radiation
lengths deep, backed up by a hadronic section. The
calorimeter is divided into a central section covering
|η| ≤ 1.1 and two endcap calorimeters extending cov-
erage to |η| ≤ 4.2. The luminosity is monitored by two
arrays of plastic scintillation counters located on the in-
side faces of the endcap calorimeters. The pseudorapidity
η = − ln[tan(θ/2)] and θ is the polar angle with respect
to the proton beam direction. The azimuthal angle is
denoted by φ and we measure object separation in the
detector in terms of ∆R =

√
(∆φ)2 + (∆η)2. We de-

note the momentum component transverse to the beam
direction with pT . Readout is controlled by a three-level
trigger system.

Since both electrons and photons result in electromag-
netic showers with very similar signatures in our detector,
we can define an inclusive selection that provides good
efficiency for selecting e+e− and γγ final states. In par-
ticular we require clusters of energy depositions in the
electromagnetic calorimeter that are consistent with the
expected shower profile using a χ2 test and have less than
3% of their energy leaking into the hadronic calorimeter
section. We require that the cluster is well isolated with
less than 7% of the cluster energy in an annular isola-
tion cone with 0.2 < ∆R < 0.4 around the cluster cen-
troid and less than 2 GeV for the sum of the pT of all
tracks with 0.05 < ∆R < 0.4 with respect to the clus-
ter centroid. To accept both electrons and photons we
do not require a matched track. We start with a data
set of 34 million events triggered on one or two electro-
magnetic showers with pT thresholds between 15 and 35
GeV. We select events in which there are at least two
such clusters with pT > 25 GeV in the central calorimeter
with |η| < 1.1. Including clusters in the end calorimeters
would add little acceptance for decay products of massive
objects. In the collider data we find 43639 events that
satisfy these selection criteria with the invariant mass of
the two clusters Mee/γγ > 60 GeV.

Within the standard model, the Drell-Yan process and
diphoton production give rise to e+e− and γγ final states.
The invariant mass spectrum for these is expected to fall
towards higher masses except for the Z → e+e− reso-
nance. We model these backgrounds using a Monte Carlo
simulation with the pythia [7] event generator using the
CTEQ6L parton distribution functions [8], followed by a
geant-based [9] detector simulation. Another source of
events is the misidentification of one or two jets as elec-
tron or photon candidates. The shape of the invariant
mass spectrum of this source of events is estimated from
data by selecting events with energy clusters in the elec-
tromagnetic calorimeter that are not consistent with elec-
tromagnetic showers and fail the χ2 test for the shower
profile. The absence of the Z resonance in the back-
ground spectrum in Fig. 1 confirms that this sample has
no significant contamination from e+e− final states.
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We fit the shape of the invariant mass spectrum from
the data near the Z resonance (60 < Mee/γγ < 140 GeV)
with a superposition of the spectrum from Monte Carlo
predictions for the standard model processes and the
spectrum expected from misidentified clusters. In the
fit, the spectra from e+e− and γγ final states are nor-
malized relative to each other by the leading order cross
section from pythia, the total number of events is fixed
to the number of events observed in the data, and the
fraction f of all events that have misidentified clusters is
the only free parameter. We obtain best agreement with
the data for f = 0.21 ± 0.01. The spectra are shown in
Figure 1. Trigger thresholds affect the shapes near the
low mass end of the fit window. We account for this by
assigning a systematic uncertainty on the value of f . At
masses above 100 GeV the trigger is fully efficient.
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FIG. 1: Invariant mass spectrum from data (points). Super-
imposed is the fitted total background shape from standard
model processes including events with misidentified clusters
(open histogram) and the fitted contribution from events with
misidentified clusters alone (shaded histogram).

We compare the invariant mass spectrum of our back-
ground model with the fitted value of f to the data at
higher masses. As shown in Figure 2, we find agreement
between background model and data in the high-mass
range. There is a slight mismatch in the mass resolu-
tion at the Z peak between our Monte Carlo simulation
and the data. We verified that this does not affect the
predictions of the background model at higher masses.

From the fitted number of pp → e+e− + X events
(most of them in the Z resonance), the acceptance and
efficiency from the Monte Carlo simulation, and the cal-
culated standard model cross section, we determine the
integrated luminosity of the data sample. All Monte-
Carlo derived efficiencies are multiplied by 0.96 so that
the efficiency from the Z → e+e− Monte Carlo simula-
tion agrees with the efficiencies measured in Z → e+e−
data. The leading order cross section for the e+e− final
state with 60 < Mee < 130 GeV from pythia is 178
pb. We multiply this by a next-to-leading order (NLO)
K-factor of 1.34 [10]. This gives 985± 35 pb−1. The un-
certainty in this number is dominated by the uncertainty
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FIG. 2: Invariant mass spectrum from data (points). Super-
imposed is the fitted total background shape from standard
model processes including events with misidentified clusters
(open histogram) and the fitted contribution from events with
misidentified clusters alone (shaded histogram). The grey
shaded histogram shows the signal expected from gravitons
with M1 = 300, 600, and 900 GeV and k/MPl = 0.1 on top
of the total background.

in the cross section from parton distribution functions.
We do not include uncertainties on efficiencies and ac-
ceptances because these cancel in the limit calculation.
This value is in agreement with the number determined
using the luminosity counters (1036 ± 63 pb−1) [11].

We determine the signal acceptance and efficiency us-
ing a Monte Carlo simulation of RS gravitons with 200 <
M1 < 1000 GeV using pythia and geant. Systematic
uncertainties in the signal efficiency originate from de-
tector resolution (1-11%), parton distribution functions
(0.2-5.5%), electron and photon identification efficiencies
(1.4%), and the finite signal Monte Carlo sample size
(0.5%). Contributions to the uncertainty in the back-
ground prediction are from the finite size of Monte Carlo
and data samples (2-24%), parton distribution functions
(2-10%), the mass dependence of the NLO K-factor (5%),
and the uncertainty in the trigger thresholds (1%). In
some cases the uncertainties vary with the invariant mass
value.

We compute upper limits for the production cross sec-
tion of RS gravitons times branching fraction into e+e−
final states at 95% confidence level by comparing the ob-
served and expected numbers of events in a sliding mass
window. The width of the window was optimized for
maximum sensitivity using the Monte Carlo simulation
and varies from 20 GeV for M1 = 200 GeV to 120 GeV
for M1 = 950 GeV. We use a Bayesian approach to inte-
grate over all important input parameters such as signal
efficiency, background prediction, and integrated lumi-
nosity, using a Gaussian prior with width equal to the
estimated uncertainties in the parameters [12]. For the
RS graviton production cross section we use a flat prior.
To compute the limits, we use the integrated luminosity
determined from the Z signal, which gives us a more pre-
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FIG. 3: 95% confidence level upper limit on σ(pp → G +
X) × B(G → e+e−) from 1 fb−1 of data compared with the
expected limit and the theoretical predictions for different
couplings k/MPl.

cise normalization than the direct luminosity measure-
ment. Figure 3 shows the limits as a function of invariant
mass compared to predictions from the Randall-Sundrum
model and Table I tabulates the results. Based on the
observed and expected numbers of events we obtain lim-
its on σ(pp → G + X) × B(G → e+e−/γγ). We divide
by B(G → e+e−/γγ)/B(G → e+e−) = 3 [13] to convert
these to the quoted limits on σ(pp → G + X) × B(G →
e+e−).

Using the cross section predictions from the Randall-
Sundrum model with the same K-factor as for the stan-
dard model processes [15], we set upper limits on the cou-
pling k/MPl as a function of M1. This is shown in Fig-
ure 4 and tabulated in Table I. For k/MPl = 0.01(0.1)
we can exclude masses below 300(900) GeV at 95% con-
fidence level.

In summary, we have searched for RS gravitons as reso-
nances in the e+e− and γγ invariant mass spectrum from
about 1 fb−1 of data from the Fermilab Tevatron collider.
We find good agreement of the observed spectrum with
standard model predictions and set lower limits on the
mass of the first massive RS graviton at 95% confidence

level of 300 GeV for k/MPl = 0.01 and of 900 GeV for
k/MPl = 0.1. These are the tightest direct limits on RS
gravitons to date.
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